
°B

i

I

Performance Modeling and Measurement of Parallelized Code for

Distributed Shared Memory Multiprocessors

Abdul Wahccd* and JerryYan*

NAS ParallelTools Group

MRJ Technology Solutions

NASA Ames Research Center

Mail Stop T27A-2

Moffett Field,CA 94035-1000

wahccd@nas.nasa.gov

yan @nas.nasa.gov

NAS-98-012

March 1998

Abstract

This paper presents a model to evaluate the performance and overhead of parallelizing

sequential code using compiler

directives for multiprocessing on distributed shared memory (DSM) systems. With

increasing popularity of shared

address space architectures, it is essential to understand their performance impact on

programs that benefit from shared

memory multiprocessing. We present a simple model to characterize the performance of

programs that are parallelized

using compiler directives for shared memory multiprocessing. We parallelized the

sequential implementation of NAS
benchmarks using native Fortran77 compiler directives for an Origin2000, which is a

DSM system based on a
cache-coherent Non Uniform Memory Access (ccNUMA) architecture. We report

measurement based performance of

these parallelized benchmarks from four perspectives: efficacy of parallelization process;

scalability; parallelization

overhead; and comparison with hand-parallelized and -optimized version of the same

benchmarks. Our results indicate

that sequential programs can conveniently be parallelized for DSM systems using

compiler directives but realizing

performance gains as predicted by the performance model depends primarily on

minimizing architecture-specific data _

locality overhead.

PDF-- 147.5 Kbytes

PostScript--316.8 Kbytes



o.

D

Performance Modeling and Measurement of Parallelized

Code for Distributed Shared Memory Multiprocessors

Abdul Waheed and Jerry Yah t

NAS Technical Report NAS-98-012 March 1998

{waheed,ya n } @ nas.nasa.gov

NAS Parallel Tools Group

NASA Ames Research Center

Mail Stop T27A-2

Moffett Field, CA 94035-1000

Abstract

This paper presents a mode! to evaluate the performance and overhead of

parallelizing sequential code using compiler directives for multiprocessing on
distributed shared memor)' (DSM) systems. With increasing popularly" of shared

address space architectures, it ts essential to tmderstand their perJormance
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1 Introduction

Distribute Shared Memory (DSM) systems are becoming popular in high performance computing because

they offer ease of programming due to a global address space and scalability to large number of nodes.

Although DSM systems facilitate programming, they can potentially introduce performance bottlenecks

that require additional effort on the part of a user to discover and eliminate [20]. Non Uniform Memory

Access (NUMA) architectures can incur orders of magnitude greater latencies to access data that reside

farther from the processor in memory hierarchy [11]. These systems often use cache-based commodity

processor with cache coherence implemented in hardware to hide latency. Memory traffic generated by

protocols that keep the caches coherent is another potential source of performance degradation. While the

developers of compilation and parallelization tools for shared memory systems have addressed some of

these problems, extensive user input is still required to fully benefit from these tools [2,3.10.16].

Unt, erstanding the sources of parallelism in a program and potential overhead due to subtleties of a DSM

architecture is essential for effectively using these systems.

Due to the growing disparity between processor and memory speeds, tool developers haxe been focusing

on measurement-based tools to analyze memory performance. Several state-of-the-art microprocessors

provide on-chip performance counters to facilitate these measurements [20]. Howe,ter. most of the existing

tools and techniques are limited to evaluating cache and memory performance for a single processor [19].

These tools typically do not directly address multiprocessor memory performance issues. There are

examples of research prototype DSM systems that can support memory performance measurements across

mtHt,processor nodes [7]. Unfortunately, such tools are not yet widely available for commercial

multiprocessors. We present a perfomtance model that accounts for inherent parallelism in a program.

which can result in potential speedup as well as overhead when that program is executed on a DSM system.

This model can be used to analyze the efficacy of parallelization and quantitatively measure the overhead

of parallelizing a program. Quantitative evaluation of this overhead provides an indirect measure of

effective u:ilization of available memory subsystem performance.

h: this paper, we present a performance model to characterize the execution of a compiler directives-based
t

paralleiized program. We subsequently apply this model to evaluate the performance of our parallelized

version of NAS benchmarks on SGI Origin2000. which is a commercial DSM system with a ccNL.%IA

architecture. Each node of the s.vstem consists of two MIPS Rl0000 processors with two levels of separate

data and instruction caches for each processor: and 4GB of main memory shared between two processors
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on a node. Multiple system nodes are connected in a hypercube topology through a high speed network.

We used native tools to parallelize,:! the sequential implementation of NPBs [14]. These tools include:

Power Fortran Accelerator (PFA), which can automatically insert parallelization directives in sequential

code and transform the loops to enhance their performance; Parallel Analyzer Hew (PAV), which can

annotate the results of dependence analysis of PFA and present them graphically; and Fortran77 compiler

with MP runtime library to compile and executed the parallelized code [13]. In addition to using these

tools, we inserted some directive by hand to assist the compiler and improve the performance.

We explain the directives-based parallelization paradigm in Section 2. A performance model and metrics to

evaluate different aspects of a directives-based parallelized program are presented in Section 3. Section 4

reports de:_:iied measurement ba_ed eva!uation of the paralleiized NAS benchmarks us;ng performance

model and metrics of Section 2. We briefly survey the related research efforts in Section 5 and conclude in

Section 6.

2 Compiler-Directed Parallelism

Compiler-directed parallelism has been traditionally used for vector supercomputers. It has recently started

attrac.'ing attention of mainstream vendors due to increasing popularity of Symmetric Muitiprocessing

(SNIP) systems. Parallelization directives can be insencd in legacy sequential code to tap the

multiprocessing potential of an SNIP architecture. These directives are in the form of special comments that

are ignored by a compiler without appropriate multiprocessing flag. Thus, there is no need to main'ain

separate sequential and parallelized versions of the same code. There is an ongoing effort of standardizing

these, directives to port programs across dtfterent SMP platforms [ tS].

Potential parallelism c.f a DSM system can be exploited in one of three ways: message-passing: use of data-

para!lel languages" or compiler-directed multiprccessing. _,lessage-passing provides the user with explicit

control over communication and synchronizations through commonly used message-passing libraries [ 12].

D(t'_-p:tralle; pro_r,:mming ho2guafles allow the users to write SPMD pregrams without explicit message-

pas3it,_,'. _b, ich is handled by the compiler and its runtime system. The main source of parallelism is the

program data. which can be distributed among different processors through compiler directives. High

Performance Fortran (HPF [6]) is a standard for these directives that have been used by several compiler

developers. Both message-passing and data-parallelism force a user to develop a parallel algorithm, which

is a challenging task. Due to the simplicity of programming shared memory systems, compiler developers

4



have been investigating different techniques to exploit parallelism directly by the compilers for such

systems. This process can be accomplished automatically with a compiler or through some hints provided

by the user to the compiler [15].

Before inserting compiler directives in sequential code, one has to identify parts of the program that can be

parallelized without affecting the correctness. The main source of parallelism is the loops whose iterations

can be scheduled on multiple processors without any data access dependence or conflicts among different

iterations. This requires dependence analysis for every loop nest of source code. For a given loop nest, it is

customary to parallelize the outer-most loop to have significant work for each set of iterations that are

scheduled on multiple processors. The user may have to modify some loop nests to resolve dependences on

the outer-most loop index to parallelize the loop. If there are data dependencies between different iterations

of the outer loop, paralleiization is inhibited to preserve correctness of the program. As illustrated in Fig'are

1, this parallelization is an iterative process, which continues until most of the loops contributing to the

overall ex:ecution time are parallelized. Finally, the parallelized code is compiled and linked using with

appropriate runtime libraries to execute on a target multiprocessor.

Sequontlal code modifications
"_, needed insertions an SMP system

Figure I. General methodology of parallelizing sequential code using compiler directives for shared
memory multiprocesstng.

Compared to the process-level parallelism for message-passing programs, directive-based parallelism

constitutes a finer-grained, loop-level parallelism. Figure 2 provides an example of this parallelism

implemented through MIPS Fortran compiler directives for multiprocessing [13]. The CSDOACROSS

directive instructs the compiler to divide the outer loop iterations equally among the available processors.

This is the default loop scheduling, which is implemented by the runtime system until specifically

instructed otherwise by additional compiler directives. Data distribution directive. CSDISTRIBUTE works

at the level of memory pages rather than array elements in data-parallel languages. Thus, the data

distribution is relatively coarse-grain.

Directives-based parallelism is supported by the MP runtime library on Origin2000, which implements a
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integer i. j, k

double precision temp

double precision a(256,256,256), b(256,256,256)

c$distribute a(*,*,BLOCK)

c$distribute b(*,*,BLOCK)

c$doacross local(k,j,i,temp)

do k = 1,254

do j = 0, 255
do i = 1,255

tmp = 1.0d+001 a(i.j,k)

b(i,j,k) = a(i,j,k) * trap
enddo

enddo

enddo

i-igure 2. -kn example of iu.rtruction-level parallelism using MipsPro Fortran77 tomp;ler directives for
rnultiproce_sing.

forL-,:nd-joir'. [-aradigm of parallelism. A master thread initiates the program, creates multiple slave

thr_M::, schedules the iteraticns of parallelized loops on all the threads including itself, waits for the

c._m!.le::,on oi' a parallel loop b? all the sla_e threzds, and executes sequential potion_" of the pr,_gram. Slave

threads wait for work (i.e., for parts of parallel loops) when the master thread executes a sequential portion

ot the code. Figure 3 represents this runtime system graphically. Clearly, the main disadvantage of this type

of paral!elism is the overhead to synchronize different threads that execute different iterations of a loop.

Cons iderin_z ease of programming, directives-based parallelism has clear ad- antage._ over message-passin#

and data-parallelism. However. performance impact of using this programming style on a DSM system is a

relativel,, unexplored area. We focus on performance evaluation of directives-based parallelized programs

in subsequent sections.

3 Performance Model and Metrics

Compared to message-passing and data-parallelism, compiler-directed parallelism is comparatively fine-

grained. Parallelism is discovered from the loops in sequential program wh,_se iterations can be scheduled

on multiple processors. It is simpler .fo quantif,_, the amount of para!lelism that has been discovered it, a

directives-based parallelized program. Based on these initial measurements, we can estimate the

performance with multiple processors under ideal conditions of utilization. We use these estimates to

quantify the overhead of directives-based parallelization techniques that is otherwise hidden from the user.

This analysis helps the user to decide whether or not a locality optimization effort will be useful. We first
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Figure 3. Execution of a parallel loop using fork-and-join paradigm with three threads.

explain the performance model with respect to DSM system architecture that we are focusing

Subsequently. we define metrics to evaluate parallelization and scalability of the parallelized code.

on.

3.1 Performance Model

Consider a sequential program consisting of N blocks, such that only one block is executed at any time.

Unless otherwise indicated, we shall use the term b!ock interchangeably with subroutinc. This is true for

most of the programs developed in a structured m,_nner. The sequential execution time of the program is

denoted by Tr and is calculated as:

N

_t i •

.=]

(I)

where ti is the execution time spent in the i-th block. We have to measure the aggregate time spent in every

block of the code that substantially contributes toward the overall sequential executien time. Therefore. we
t

define the seq,ential cost for executing the i-th block as a fraction:

i (2)
SC, = _.

When a program is executed in parallel using fork-and-join paradigm. synchronization overhead is
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incurred by slave threads to wait for parallel work and by the master thread to wait for all the slave threads

to finish executing a particular parallel loop. The execution time of a directives-based parallelized program

is denoted by Tp and is given by:

N N N N

r,. Z ',+,o° £ ('p,+,,,)+'o= Z",+ Z",+'o.
f=l i=l isl i=1

where the (useful) execution time spent in the i-th block (ti) is the sum of time spent in parallelized loops of

that block (tp i) and the remaining sequential code of that block (tsi). Parallelization overhead for the entire

program is given by to because it is non-trivial to measure it for each individual parallelized block of the

program using profiling. Considering the architecture of a ccNUMA-based DSM system, parallelization

oxerhead is an intricate function of following factors:

l. ag_egate synchronization time between threads during execution ofa parallelized program;

2. number of para!lel loops:

3. aggregate load imb:dance between threacls during execution of a paradelized program:

4. non-local memory accesses by each thread; and

5. resource contention between a thread and other users on the system.

While the first four factors may not change from one execution to another, the resource contention due to

other users of the system affects in an unpredictable manner. Since directives-based parailelized programs

rely on access to shared data structures for synchronization as well as computations requiring non-local

data. it,e) are particularly susceptible to the contention from other users Quantitative calculation of

parallelization overhead and other metrics are presented in the follossing subsection.

"_ Performance Metrics

Consider that a subroutine j in the program has K parallelized loops. Then we define the metric parallel

c:),'er, tge of subroutinej as:

K

tp:

PC. = '= T (4)
T

F

Note that parallel coverage of a subroutine can be determined by profiling the execution of a sequential

program. This technique is often used to determine the fraction of code that can be executed in parallel [4].

The total parallel coverage of a parallelized program is equal to the sum of parallel coverages of all

subroutines in the program. If there are L subroutines in a program, then the parallel coverage of the entire



program iscalculatedas:

o

i

L

PC = 7., PCj. (s)
jsl

A value of PC close to I.O (or 100%, if expressed as a percentage) will be an ideal value for a parallelized

program indicating that there is no sequential code and no parallelization overhead. Therefore, executing

such a program on n processors should result in a speedup of n, provided that all the processors are fully

Utilizexl during the entire eXeCUtion. A higher value of this metric is desirable because it represents a better

parallelization of sequential code.

Amdahl's law based on fixed workload can be used as a measure of scalability of the parallelized code

under fork-and-join execution model. According to Amdahrs law if a is the sequential fraction of a

program, the maximum possible speedup that can be obtained on an n processor system is given by:

| Pl

Sa = 1-_ l+afn-I)"
_+._

tl

(6'

where a is the fraction of serial portion of the code. Noting that parallel coverage PC= l-a, we can express

ideal speedup according to Amdahl's lag' as:

') (7
S. = PC+,.'I-PC)"

Using this definition of theoretical speedup, we can now calculate the combined value of paralleiization

overhead as:

"_ Ts

t o = Tp- E(tpi+ts_) = Tp--_(PC+n(i-PC)).

151

(8)

where Tp is the measured execution time on n processors.

Parallel coverage and speedup metrics defined by equations (5) and (7). respectively for independent

assessment of a directives-based parallelized program. In order to compare the performance of a directive-

based parallelized program with the same pro_am parallelized using a different techniqt¢, we use

execution time as a metric. Additionally. equation (8) will be used for evaluating parallelization overhead

for directives-based paralletized programs.
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4 Performance Evaluation

Performance is evaluated from three perspectives: efficacy of parallelizafion process; scalability of

parallelized programs; and performance comparison of directives-based parallelized program against the

hand-parallelized and optimized code. The metrics discussed in Section 3.2 are used for this evaluation.

4.1 Analysis of Parallelizaflon

Parallel coverage is defined in Section 3.2 as a metric to represent the efficacy of parallelization process.

This metric was calculated for all NAS benchmarks parallelized using compiler directives for shared

memory multiprocessing. For these calculations, the benchmarks are compiled with instrumentation to

me-".sure the time spent in each subroutine that contains parallel code bloc ks. We execute these programs on

a single processor of Origin2000.

Table I presertts detailed measurements related to parallel coverage ol:tained in BT. Sequential

implementation of BT contains a number of modular subroutines that solve Navier-Stokes equations using

a Block Tricdagonal algorithms. An inspection of these subroutines indicates that most of this algorithm

contains sufficient parallelism. Quantitatively, these measurements indicate that the code responsible for

more than 99% of the entire execution time is parallelized. This level of parallelism was attained after

iteratively analyzing the source :.ode and disco',ering possibilities of parallel!zation by minor modifications

in some loop nests.

The same measurement procedure was repeated to calculate parallel coverages for FT, CG, and MG

benchmarks. A summary of these calculations is reported in Table 2. Unlike BT, we relied on native SGI

tools (PFA and PAV) to parallelize these benchmarks. Furthermore, we had to manually perform inter-

procedural analysis to parallelize a few important loops in FT.

Table 2. Parallel coverage of FT. CG, and MG benchmarks.

Execution

time _sec)
i

203.70

Benchmark

Parallel

Coverage _%)
i

98.26

t

I Executiontime for

I parallel blocks(sec)

2oo.15

48.49

90.56

CG 50.65 95.75

MG 96.93 93.43

The results shown in Table 2 suggest that 93%-99% of the code is parallelized. It should be noted that

10
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Table 1. Parallelization statistics obtained from measurements of BT on an Origin2000 node.

Sequential cost and parallel coverage is expressed x_ a percentage of total execution- time, which is
2723.96 sec for this particular execution.

Subroutines with

parallelized code

add

Sequential
overall time

(sec)

19.05

Execution

time for

parallel blocks

(sec)

19.05

Sequential
Cost (%)

0.69

r'ns_norm O.13 O.13 0 0

exact_rhs 2.31 0.83 0.08 0.03

initialize

Ihsinit

Ihsx

Ihsy

Ihsz

compute_rhs

6.17

2.35

357.80

375.06

453.2t

272.45

103._5

304,49

106.87

x_backsubstfl,.;te

0.19

2.34

357.80

I 375.00

a53.20

272 45

0.22

0.08

m

x_solve cell
1

y_backsubstitute

13.79

13.76

16.63

10.00

10375 I 3.80304 48 11.17

q - •,Co.4v 3._ /

Parallel

Coverage (%)

0.69

0

0.08

13.79

13.76

I 16.63I
t 10.00

3.80

11.17

I 3.90

y soive cell 306.05 } 30500 11.23 ! 123

z backsubstitute 106.87 106.90 3 02 3 92

z_solve_ceil 307.25 307.10 11.28 11.27

Total 2723.80 2715.50 99.99 99.69

,,;hen a program is 100% parallelized, a linear speedup could be obtained provided that all the processors

are equally utilized throughout the execution. This theoretical speedup will be used as .,, criteria to evaluate

the actual performance of paralletized code in the follo_vmg subsections.

4.2 Analysis of Scalability

Figure 4 preset:ts the scalability characteristics of the four parallelized benchmarks. The ideal execution

time valt,es are calculated assuming a linear speedup from sequential execution times. Theoretical

execution time ,,alues are determined according to speedup obtained from equation (._ in Section ? 2. The

speedup is less than ideal or theoretical value_ for BT and FT. However. CG and MG exhibit close to ideal

gpe_:dt_p values. BT and FT are relatively larger programs compared to CG and MG. Additionally.

algorkhms for BT and FT depend on a regular pattern of data accesses which is not the case for CG and
I

MG [51. Lack of structured data accesses helps loop-level parallelization paradigm by reducing

parallelization overhead unlike message-passing or data-parallelism. Therefore. BT and FT are susceptible

to overhead due to data locality as _,vell as synchronization. Since these overhead are not significant for CG

and MG due to their structure as well as smaller number of parallelized loops, the speedup is close to ideal.

li



In fact. CG and MG show better than ideal speedup for some number of processors. This is not unusual for

a cache-based DSM system. Ideal or theoretical speedup is determined with respect to sequential execution

time, which is constrained by the amount of data that can be kept in caches. With computation and data

distributed on multiple cache-based processors of Origin2000, the effective cache size also increases

resulting in higher than expected speedup for some executions of CG and MG.

J .... Ideal
TheorelJcal

Measured

mr---"

._ Tim

iii Im

I

1o m _ 4 N u

Number of processors

(a) BT

tll

J

yo

i-
uJ

:1 4 41 II I 11 14 _1

!.i
U,I

io-

°;

i i 0
no f$ _g Is 3o

Number of processors

(b) FT

4 I o gO ul _, _1

Number of processors Number of processors
(c) CG (d) MG

Figure 4. $calability characteristics of'directives-basedparallelized programs and their comparisons
with ideal and theoretical speedup.

Based on the results of scalability measurements, it can be observed that speedup close to the ideal and

theoretical values are attainable by parallelizing programs using directives-based approach. However, the
J

differences from the expected theoretical values of speedup should be expected for larger applicgtions with

regular data accesses. In those cases, careful data distribution becomes important to obtain high speedup

values. In fact, many argue in favor of using fine-grained data distributions, similar to those used in

message-passing programs, in conjunction with shared memory muhiprocessing directives to leverage the

L2



benefits of both paradigms.

4.3 Parallelization Overhead

D

Measurement based results presented in Section 4.2 indicate that parallelization overhead is inevitable even

when the performance is close to ideal. The overhead stem from the cache-based DSM architecture as well

as excessive synchronization to support loop-level parallelization at the runtime. In order to put these

overhead in proper perspective; we first present the measured values of parallelization overhead for

directives-based parallelized implementation of NAS benchmarks in Section 4.3.1. Then we analyze

synchronization overhead using a synthetic loop nest in Section 4.3.2.

4.3.! Measurement of Parallelization Overhead

Compared to .--'_'. CG. and MG. considerably more time was sper-', on BT to analyze and zunc its

perfermance. Speedup characteristics of BT based solely en its parallelization did not show any

a_,l.,r..ciable ,eduction in exec_,tion t,me with increasing number of processors e,.en _ith clo_. "., ideal

paralle! coverage as discussed in Sectior 4.1. This is duc to the overhead of accessing data not tot'nd in

caches or local memory. Therefore. all parallelized loops _ere re-examined and additional directives that

enable data distribution at the granularity of pages of memory were inserted. This resulted in significant

performance improvement compared to its initial unoptimized implementation. As shown in Figure 4ta),

parallelization overhead is small as a result of additional data distribution directives. However. as we know

frot,a the speedup characteristics of CG and MG. close :o ideal speedup is attainable b_, removing data

locality o_,erhead such that most of the data accesse_ are limited to the first level caches. We first try, to

asses_ the quantitltive value of this overhead tbr BT using equation ($_.

Table 3 lists :he ideal, theoretical, and measured execution times for BT using multiple processors.

Pa,alleiizarion o_erhead is presented as a percentage of measured execution time. Clearly, the actual

speedup is lower than the expected theoretical rfiaximum value for any number of processors. Nute that _t-.e

Faralk.:_z:ttion overhead continues to increase with the number of processors and accounts for about 75%

,,t :he t.,tal execmion time with (-,4 processors. This t:ehavior is an indication of non-optimal data
I

placement that results in non-local data accesses as _ell as cache coherence traffic. As we mentioned in

Section 3.1. it is difficult to quantify the parallelization overhead due to a number of factors that can

potentially aggravate it. Although the measurements presented in Table 3 suggest that the bottleneck could

be due to data locality overhead, it is practically impossible to isolate its quantitative contribution to overall

13
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everhcad due to other factors including synchronization and resuurce contention.

Table 3. Calculation of paraIlelizafion overhead of BT on on a range of I to 6-1 nodes of Origin2_)0.
__u,

Number of

processors

Ideal
execution time

(sec)

2723

Theoretical
execution time

Measured
execution time

(sec)(sec)

2723

Parallelization

overhead (%)

0

4 680 687 26.20

-- 9 303 310 455 31186

16 170 178 374 52.41

- 25 109 117 216 45.83

36 76 84 186 54.84

49 56 64 182 54.84

64 43 51 198 74.24

Among parallelization overhead, synchronization overhead can be measured using SGI's SpeedShop

too!set, which can determine the time spent in synchronization primitives of NiP library. This profiling

infurmation is obtained using hardware performance counters on MIPS R lCX)O0 processors. These

measurement based experiments were carded out for BT, FT. CG, and MG using relatively small number

of processors. Running such experiments for larger number of processors results in perturbation of the

actual program to a point that profiling itself becomes a significant overhead. The resutts of these

experiments are reported in Table 4. Synchronization overhead for each case is obtained as a percentage of

measured execution time. Syr_chronization o_erhead were as high as 19% in some cases. The last ,:olumn

lists the total parallelization overhead obtained by subtracting measured execution time from the theoretical

execution time according to equation (8). In two cases, this calculation is not possible due to better than

expected speeJup of CG and MG, which is a consequence of untuned sequential versions of these

programs as discussed in Section 4.2.

Although the measurements report up to 19% overhead due to synchronization, it is incorrect to assume

that synchronization overhead is a result of parallel loop scheduling alone. Synchronization and data

io_.ality overhead are strongly correlated with each other. The time that a master thread spends v_aiting for

slaves to finish executing a parallel loop could be due to a combination of two reasons: ('1) time to

synchronize multiple threads; and (2) load imbalance bet_veen master and some of the slave threads due to

their non-local data accesses. If resource contention from other users is also considered, the problem of

isolating one particular type of overhead becomes even more complex.

14



Table 4. Parallelization overhead for directives-based parallelized NAS benchzrmrks.

8

Benchmarks

BT

Number of

processors

4

I

i Theoretical
execution

time (sec)

804

Measured

execution time

(see)

1053

Measured

synchronization
overhead (see)

208 (19.75%)

Total

overhead

(sec)

249 (23.65%)

9 363 444 80 (17.98%) 81 (18.24%)

FF 4 35.24 .... 39.66 2.62 (6.6%) 4.42 (11.14%)

8 18.79 23.02 2.37 (10.3%) 4.23 (18.38%)

12.974 14.58

4.78

CG 2.80 (19.2%)

0.74 (I5.5%)7.46

1.61(I1.04%)

MG 4 22.14 18.41 0.63 (3.4%) --

8 13.50 14.92 0.60 (4.0%) 1.42 (9.5%)

4.3.2 Analysis of Loop Synchronization Overhead

Before i'e:'.ching any conclusions about paralleIization o,erhead, a few 3implc _xperimen:_ were carr,ed out

tu measure _yn.chronization overhead for distributing loop iteration.,,. Code fragment lisLed in Figure 5 is

used to isolate this overhead frc, m any other at m.uch _, pos;ible. Note tha_ all variab'..", accessed in _his

loop nest are labeled "'local". We compiled and linked this ,:ode without any compiler opt:mization flags.

This guarantees that all data accesses in parallelized loops are from first level of caches v.ithout an}' non-

local accesses. Multiple SpeedShop profiling experimentshith this code were exet:uted on 4. 8.9. and 16

processors.

integer i, j. k,l

double precision uo. u I

uO = l.O

ul = 1.0

cSdoacross local(i.j.k.l.u0.u l)

do I = I, 128

do k = 1. 128

doj = 1. 123

doi= 1. 128

u0 = ul +.I

end do

end do

end de

enddo

Figure 5. A synthetic

end

program to analyze the synchronization overhead for directives-based parallelized
programs.
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Figure 6 oresents the experimental resuks. Each bar represents measured synchronization overhead for one

_xecution of the program The to,at cxecution time for four processors is about 1.3 seconds, which scales

linearly with increasing number of processors. This is consistent with the expected behavior due to a very

simple program. The overhead measurements are consistent for smaller number of processor showing a

variation in the range of 6%-19%. The 16 processor caseshows larger overhead because it is presented as

a fraction of total execution time, which is very small in this case. Although we tried to ensure that data

locality overhead does not affect the measurements, we cannot isolate the overhead due to resource

contention from other users.
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Figure 6. Synchronization overhead for the synthetic loop nest.

Based on the results reported in this subsection, two conclusions can be drawn:

1. Assuming a properly :uned sequential version of a program to calculate accurate values of theoretical

speedup, it is possible co calculate the aggregate value of parallelization overhead.

2. It is impractical to quantitati_ ely isolate the impact of different sources of parallelization overhead.

Ca!culation of aggregate parallelization overhead using the performance model of Section 3 pro,,ides

u_ct'ul information to the user. A high value of tliis overhead, despite near ideal parallel coverage, almost

certainly indicates a memor? performance bottleneck. Parallelization overhead on a cache-based DSM

system will continue to reduce as most of the data is placed closest to the processor in the a_ailable

memory hierarchy.
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4.4 Comparative Performance Analysis

NAS benchmarks were originally written as a suite of paper-and-pencil benchmarks to allow high-

performance computing system vendors and researchers to develop their own implementations to evaluate

specific architectures of their interest [5]. NAS also provides a hand-parallelized message-passing

W, implementation of the benchmarks based on MPI message-passing library [14]. This implementation is

carefully written and optimized for a majority of existing high performance computing platforms.

Therefore, we compare the performance of our directive-based implementation against the MPI-based

hand-parallelized implementation. It should be noticed that an MPI-based implementation differs from a

directives-based shared-memory implementation of the same program in two important respects:

I. program runs under Single Program. Multiple Data (SPMD) paradigm and shares data with explicit

message-passing anaong multiple processes; and

2. data is distrS.buted such different processors "'o_ n'" differ_.'at elements of an array according to the t_Fe

of di.,tributicn.

In c,-ntrast, sh:,-ed-memo_ parallelized prvgrams _Jr_ exe:uted under a for_-and-jvin paradifm w_th a

global address space. Additionally. data distribution directives result in the ownership of different pa_.es of

data (arrays) by different processors, in contrast to the ownership of specific elements of an array.

Figure 7 presents the comparison between directives-based parallelized benchmarks and hand-parallelized.

MPI-based _ersions of the same. In all of these cages, performance improves with the number of

processors. For BT and FT. the MP!-based implementations perform slightly better than the q:ared-

memo_' implementation due to data placement. Directives-based data distribution ,'csults in placing pa_es

of arruy¢, on mt.ltiple processors Coarse grar, ularity of data distribution starts becoming a bottleneck for

larger nt,mber of processors because all loop iterations that use a particutar data element cannot be co-

located et the same node. Therefore. as the number of prccessors increases, multiple processors have to

access ".Jata from pages that they do not ogr. locally, which _.dversel:,' impact the o_era!l execution :!me. In

contrast. _ message-passing program is designed in a _av that the programmer controls locality of ever)

data • •c e :_, ,. A.s the number of processors increases, the amour, t of data owned by _ processor reduces

proport_'._tately. This is a particula_!v fa_,orable situa:ion f,_r a cache-ba_ed DSM sy:rem because larger

proportions of local data can reside in caches to enhance memory system performance. We tuned BT's data

locality for almost all of the parallelized loops to ensure that each loop iteration is scheduled at a processor

that owns elements of an array accessed during those iterations. Consequently. the performance of BT is

comparable to its hand-parallelized implementation. Performance of two implementations of CG and .MG
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is also comparable (see Figure 7 (c) and td)). In case of CG and MG, data locality does not become a

bottleneck due to comparatively smaller size of code with smal',er number of memo_' accesses. Therefore,

performance remains comparable with the hand-parallelized implementations of CG and MG.
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Figure 7. Pert'ormance comparison of shared-memory multiprocesslng directives-based parallelization
with MPl-based, hand-parallelized and -optimized versions of the same benchmarks.

4.5 Summary of Performance Evaluation

As a first step in evaluation process, the parallel coverage of each parall¢lized program was determined.

Despite above 90% parallel coverage in all cases, progra_ns cannot achieve close to ideal or theoretical

speedup due to parailelization overhead. Our extensive experiments indicate that a useful q_Jantitative

measure of parailelization overhead is obtained by the performance model presented in this paper, which

calculates aggregate overhead without trying to isolate different types of overhead. Based on our

experience with performance tuning described here, we conclude that parallelization overhead can be
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significantly reduced by improving data locality. Superior speedup of message-passing implementation of

same benchmarks due to improved data locality supports this conclusion.

8,

5 Related Work

Recent performance evaluation studies have examined the effect of data locality on the performance of

DSM systems. Anderson reports that overhead for programs that were parallelized with near 100% parallel

coverage and executed on Stanford DASH (a ccNUMA DSM system) resulted in significantly inferior

speedup characteristics [4]. Performance was improved by analyzing data distribution. In our case, we

conclude that single processor cache performance is another key factor that can improve performance, in

addition to appropriate data distribution. Hristea et al present the results of _veral experiments to evaluate

the performance of memor)' subsystem for ccNUMA systems [8].

Several r,-search efforts have focused on parallelizing sequential programs for shared-memeD

multipre,:_,ssors These effc,.,'r,s are becoming increasing:} important due :o the re,,ival of shared-mcmo_'

multiprc,<'essors with improved -,calability cia distributed memory and hardware cache-coherence. SUiF

compiler system incorpora.:es various modules that can be used to analyze the sequential program,

parallelize the loops, distribute program arrays, and perform inter-procedural analysis [3.41. Polaris is

another parallelizing compiler that can generate paralletized code for SMPs [16,18]. CAPTools is a semi-

automatic parallelization tool that transforms a sequential program to a message-passing program by user-

directed distribution of arrays [9]. Fortran-D [1] and ,,arious implementations of High Performance Fortran

(HPF [6]_ are examples of parallelizing compilers that v,ork for sequential programs that can benefit from

data parallelism. KAP [10] and PFA [13] are examples of commercial parallelization tools for SNIPs. We

ha_e e-xperimented with most of these tools to paralielize sequential NAS benchmarks. Based on this

experience and results reported in this paper, we consider that tools for SNIPs are simple to learn and use

and their performance is promising.

r

6 Discussion and Conclusions

Dir,:.:,,c,,-based parallelism is essentially a hne-graincd paralleli,_m that works at the level of indi,,idua!

loop iterations. This is fundamentally different from conventional coarse-grained parallelism at the level of

processes or threads. When it is implemented carefully, it can obtain much better load-balance compared to

the conventional message-passing or data-parallel techniques. On the other hand, the user is required to

spend additional time to ensure proper data locality to obtain performance comparable to hand-
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' parallelized, message-passing based implementation.

o R

We presented a performance model to characterize the performance of directives-based parallelized

programs for an Origin2000 system. Using measurements, we quantitatively evaluated the fraction of code

that was parallelized. Further evaluation indicated reasonable speedup as well as significant parallelization
J

overhead. Based on extensive tuning of one parallelized program and some isolated experiments presented

in this paper, we conclude that non-local data accesses are the main source of parallelization overhead.

Performance can be optimized by keeping data at a level in memory hierarchy, which is closer to the

processor. Based on these results, we continue to further tune parallelized NAS benchmarks.

Evaluation of parallelization overhead based on performance model presented in this paper emphasizes the

need for appropriate instrumentation of multiprocessor memory subsystem. Such instrumentation is readily

accessible to a user for measurements limited to a single node only. Without hardware or software based

ir,_trumentation of non-local memory accesses and cache-coherence traffic, direct measurement of data

locality overhead is not possible. Some corra,'nercial tool developers realize this problem and are v.orking

oJ_ _.o,_lsthat furnish multiprocessor memory performance measurements.
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